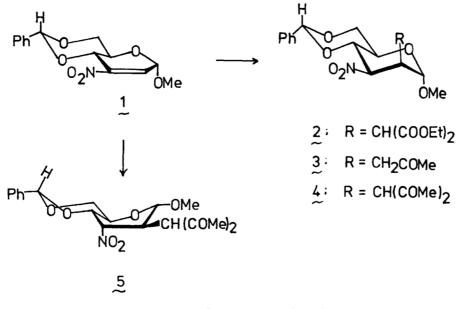
PREPARATION OF THE THERMODYNAMICALLY LESS STABLE ALTROPYRANOSIDE FROM A NITRO-SUGAR WITH ACETYLACETONE

Tohru SAKAKIBARA, Akinori SETA, Yoshifusa TACHIMORI, Tetsuyoshi TAKAMOTO, and Rokuro SUDOH Department of Chemistry, Faculty of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152

The Michael reaction of the 3-nitro-2-enopyranoside 1 with ethyl malonate in THF or with acetone in the presence of small amounts of NaOH gave the mannopyranoside 2 or 3, respectively, whereas the similar reaction with acetylacetone afforded a mixture of the mannopyranoside 4 and the altropyranoside 5.

Our recent findings¹⁾ that phase transfer catalyzed heterogeneous reactions of 1 with active methylene compounds give the thermodynamically less stable mannopyranosides prompted us to carry out similar reactions in a homogeneous system. We wish to report the preparation of the altropyranoside 5 from 1 with acetylacetone; this is the first example where not only the nucleophilic addition but also subsequent protonation was controlled kinetically in the Michael reaction of nitroolefin derivatives.


Treatment of 1^{2} (0.1 mmol) with ethyl malonate (0.15 mmol) in THF (2 ml) in the presence of 0.05N-NaOH (0.2 ml) or 5.0N-NaOH (0.2 ml) at room temperature for 1 h resulted in the recovery of 1 or afforded many products, from which isolation of 2 was failed, respectively. However, similar reaction with 1.0N-NaOH (0.2 ml) exclusively yielded methyl 4,6-<u>0</u>-benzylidene-2-<u>C</u>-bis(ethoxycarbonyl)methyl-2,3-dideoxy-3-nitro- α -<u>D</u>-mannopyranoside (2); this result is the same as the phase transfer catalyzed reaction.¹

Though in the heterogeneous system the reaction of 1 with acetone resulted in the introduction of a hydroxyl group instead of an acetonyl group at the C-2 position, homogeneous reaction of 1 with acetone smoothly proceeded to give the desired mannopyranoside 3 in a high yield.

Similar treatment of 1 (0.1 mmol) in THF (2 ml) with acetylacetone (0.2 mmol) in the presence of 0.2N-NaOH (0.1 ml) afforded a new compound 5 [mp 163-164°C, $[\alpha]_2^{00} + 26.8^{\circ}$ (cl, Me₂CO)] besides the expected mannopyranoside 4^{1}) in a ratio of 3 : 1. When this reaction was stopped after 10 min, 5 was isolated in 82 % yield (quantitatively on tlc and by NMR spectroscopy). The reaction was monitored by NMR spectroscopy ; the ratio of 4 to 5 increased along with reaction time as 0.3 (l h), 0.5 (2 h), 1.0 (4 h), and finally only 4 was detected (l day). The <u>manno</u> isomer 4 did not epimerize to the <u>altro</u> isomer 5 under the above conditions. These results suggest that 5 is a thermodynamically less stable epimer of 4, namely, the altropyranoside. Generally nucleophilic addition reaction to nitroolefin in a six-membered ring system afforded only the products with the equatorial nitro group because of strong tendency of the nitro group to occupy the equatorial orientation.³⁾ The <u>altro</u> structure for 5 was supported by NMR data, of which assignment was carried out with the help of INDOR method and confirmed in comparision with the spectrum of 3-deuterated derivative of 5; i) $\underline{J}_{1,2}$ =10.5 Hz indicates the diaxial relationship between H-1 and H-2, ii) $\underline{J}_{2,3}$ =2.5 and $\underline{J}_{3,4}$ =4.5 Hz suggest the equatorial orientation of H-3, iii) $\underline{J}_{4,5}$ =10.0, $\underline{J}_{5,6e}$ =5.0, and $\underline{J}_{5,6a}$ =10.0 Hz show the benzylidene acetal ring having normal chair conformation. An acceptable structure for these values is limitted to the <u>altro</u> configuration with a slightly twisted boat form. The structure of 5 is very interesting because, to our knowledge, there are few examples⁴ that transfusion of a benzylidene acetal ring at the C-4 and C-6 position of a hexopyranose system adopts the boat form.⁵

It is particularly noteworthy that as seen from NMR spectrum the more stable <u>manno</u> isomer <u>4</u> epimerized partially to the less stable <u>altro</u> isomer <u>5</u>, when <u>4</u> was treated with 0.2N-NaOH in DMSO-<u>d</u>₆, but not at all in THF.

More detail of such solvent effects and application of this system to other acive methylene compounds are on progress.

References and Note

1) T. Sakakibara and R. Sudoh, J. Org. Chem., 40, 2823 (1975).

2) H. H. Baer and F. Kienzle, <u>Can. J. Chem.</u>, <u>45</u>, 983 (1967).

- 3) H. H. Baer and J. Kovar, <u>Can. J. Chem.</u>, <u>49</u>, 1940 (1971).
- 4) T. Takamoto and R. Sudoh, <u>Bull. Chem. Soc. Jpn</u>, <u>48</u>, 3413 (1975);
- the 2-nitropyranoside derivative has twist boat form in chloroform-d.
- 5) P. L. Durette and D. Horton, Adv. Carbohydr. Chem. Biochem., 26, 49 (1971).

(Received September 17, 1977)